现在的位置: 首页资讯>正文
当“量子计算”遇上“机器学习”,会碰出怎样的火花?
2018年03月02日 作者: 暂无评论 356+ 0

ai到今天,“量子计算”与“机器学习”的结合似乎成了世界上最自然的事情。神经网络和其他机器学习系统已成为21世纪最具破坏性的技术。它们的能力远超出人类,不仅在国际象棋和数据挖掘等方面表现出众,而且......

据国外媒体报道,美国著名科技媒体《连线》撰文分析了量子计算在机器学习系统中应用的优势、弊端以及现有范例,表示两者的结合或终将修成正果,解决人工智能等诸多问题。

早在上世纪90年代,威奇塔州立大学的物理学教授伊丽莎白·贝尔曼(Elizabeth Behrman)开始致力于研究量子物理与人工智能的结合,而其中的神经网络在当时还堪称是特立独行的技术。大多数人认为她在把油和水进行混合。她回忆说:“我花了很长时间才把论文出版。与神经网络相关的期刊会说,’量子力学是什么?’,物理期刊会说,’神经网络是什么?’”

但到今天,两者之间的结合似乎成了世界上最自然的事情。神经网络和其他机器学习系统已成为21世纪最具破坏性的技术。它们的能力远超出人类,不仅在国际象棋和数据挖掘等方面表现出众,而且在人类大脑所擅长的面部识别、语言翻译等方面进展迅速。通过后台的强大算力,这些系统的价值不断凸显。对于科技公司来说,寻找更大算力的新型计算机不可避免。

经过数十年的研究,量子计算机相比于其他类型计算机已经具有足够的优势来执行超越地球上任何其他计算机的计算。通常认为其上运行的杀手级应用程序能够解析大数据,这也是现代加密技术的关键问题。

但这一技术要落地依旧还需要十多年的时间。在今天,初级量子处理器完全能够匹配机器学习的需求,这种计算机通过对大量数据的操作,解析出传统计算机无法识别的细微模式,并且不会因数据的不完整或不确定性而受到影响。 “量子计算的内在统计特性与机器学习技术之间有着天然的耦合性,”位于加利福尼亚州伯克利的量子计算机公司Rigetti Computing物理学家约翰奥特巴赫(Johannes Otterbach)如是指出。

可以说,关于量子技术发展的钟摆正处于一端的高点。谷歌,微软,IBM以及其他科技巨头纷纷投入量子机器学习,而多伦多大学的创业孵化器也致力于此。 “‘机器学习'正在成为业界的一种流行语,”莫斯科斯科尔科沃科学与技术学院的量子物理学家雅各伯·比亚蒙特(Jacob Biamonte)说,“当你把它与‘量子'结合在一起时,它就成了一个超级流行词。”

然而,“量子”这个词本身并没有任何意义。即便你或许会认为量子机器学习系统应该是强大的,但它却受到了类似于闭锁综合症的影响。它需要在量子状态下运行,而非在人类可读的数据上进行操作,而两者之间的转换可能会抹杀其最大的优势。就像现有的iPhone X一样,虽然配置很高,功能很强,但如果网络不好的话,也会和旧手机一样慢。在特定的情况下,物理学家或许可以克服这种输入输出的瓶颈,但是在实际的机器学习任务中如何解决相关问题我们仍然是不得而知。 “我们还没有明确的答案,”奥斯汀得克萨斯大学计算机科学家斯科特·阿伦森(Scott Aaronson)说,其在量子计算方面一直保持着清醒的头脑, “人们往往并不在乎这些算法是否会加快处理速度。”

量子神经元

无论是传统神经网络还是量子神经网络,其主要工作都是识别模式。这种技术主要由人类大脑启发而来,是由所谓“神经元”构成的网络。每个基本神经元像开关一样简单,而一个神经元能够监视多个其他神经元的输出,如果有足够多的神经元开启,它也就会转换状态。通常神经元排列成层,初始层接受诸如图像像素等输入,中间层创建表示图形边缘和几何形状等结构的各种输入组合,而最后一层则产生诸如关于图像的高级描述等输出内容。ai

图示:神经网络结构图

至关重要的是,这种结构并不是事先确定的,而是在反复试验的过程中进行相应调整。神经网络可能会被输入标有“小猫”或“小狗”等定义的图像。对于每个输入的图像,它会分配一个标签,检查结构是否与图像匹配,如果不是则调整神经元连接。起初机器等这种“猜测”是随机的,但会越来越好;比如在处理10000个学习样例后,神经网络能够达到更好的效果。一个大型神经网络可能有十亿个互连,所有这些都需要在训练中进行反复调整。

在经典的计算机上,所有这些互连都由一个巨大的数字矩阵表示,运行神经网络实际上意味着做矩阵代数。通常,这些矩阵处理是由诸如图形处理单元的专用芯片所完成的。但是没有什么能够像量子计算机一样处理矩阵。麻省理工学院物理学家、量子计算先驱赛斯·劳埃德(Seth Lloyd)表示:“在量子计算机上处理大型矩阵和大型矢量的速度更快。”

量子计算机能够利用量子系统的指数性质进行矩阵运算。在量子计算机中,与传统计算机中最小的数据存储单位比特所对应的是量子比特,但量子系统的信息存储容量并不依赖于其单个的数据单元 ,而是这些量子比特的表征叠加。两个量子比特共有四个叠加状态:00,01,10,11。每个都代表一定的权重或“偏振度”,可以代表一个神经元。如果有三个量子位,则可以代表八个神经元,以此类推,四个量子比特就可以代表16个神经元。机器的容量呈指数级增长。实际上整个神经网络系统中的神经元都处于一种游离态。结果就是,当量子计算机在四个量子比特的状态下工作时,一次能够处理16个数字,而一台传统计算机则必须逐个处理这些数字。

劳埃德估计,60个量子比特所编码的数据量就可以超过全人类一年所产生的数据量,而300个量子比特可以处理全宇宙的所有信息量。目前世界上最大的量子计算机由IBM,英特尔和谷歌联合开发,拥有大约50个量子比特。阿伦森称,如果假设一个传统比特只是一个振幅的话,量子比特的振幅是连续量。实际中为了合理的实验精度,一个量子比特可以存储的位数多达15位。

但量子计算机强大的信息存储能力并没有让它变得更快。你首先需要能够利用这些量子位。 2008年,麻省理工学院物理学家阿兰姆哈罗(Aram Harrow)和以色列巴伊兰Bar-Ilan大学计算机科学家Avinatan Hassidim展示了如何用量子计算机完成矩阵求逆的关键代数运算。他们把其分解成可以在量子计算机上执行的一系列逻辑运算,两位科学家所开发的算法适用于各种机器学习技术,并不需要像诸如数据分解等算法步骤。计算机可以在筛除噪声之前通过分类任务进行数据压缩——这也是当今技术的一个主要限制因素——或许会解决运算问题。 IBM托马斯·J·沃森(Thomas J. Watson)研究中心的克里斯坦·特米(Kristan Temme)表示:“或许在拥有完全通用的容错量子计算机之前,我们可能利用量子优势。

用自然解决问题

然而到目前为止,基于量子矩阵代数的机器学习算法仅在仅有四个量子位的机器上得到了验证。迄今为止有关量子机器学习的大部分实验成功都采用了不同的方法,其中的量子系统不仅仅模拟神经网络;它本身就是网络。每个量子比特代表一个神经元。虽然这种设备还缺乏取幂的强大运算力量,但像其也可以利用量子物理的其他特性。

目前最强大的这种设备有约2000个量子位,它是由位于不列颠哥伦比亚省温哥华附近的D-Wave Systems公司生产的量子处理器。这并不是大多数人所认为的那种传统电脑。传统电脑输入数据,通过执行一系列操作并显示输出。相比之下,这种量子处理器通过查找内部一致性来工作。它的每个量子比特都是一个超导电子回路,你可以把它看作一个微小的电磁体,能够朝上,朝下或上下移动,同时显现出叠加状态。不同的量子比特以磁性方式进行交互,从而“连接”在一起。

为了运行该系统,首先需要施加一个水平磁场,将量子比特初始化为上下对等的叠加——这相当于没有输入。目前有几种输入数据的方法。在某些情况下,您可以将一层量子位排列成所需的输入值;研究人员更常用的方式是将输入融入耦合磁场,然后让量子比特进行互动。在电磁场的作用下,有些量子比特会沿着相同的方向排列,而有些则会沿着相反的方向排列,并且在水平磁场的影响下发生转向。这样一来,受影响的量子比特可能会触发其他量子比特的翻转。输入耦合磁场后量子比特会发生偏移,但随着时间的推移,它们会逐步稳定,你可以关闭水平磁场以锁定量子比特的状态。此时,量子比特塌缩成01状态,从而获得最终解。

文章分页: 1 2

相关文章

机器学习到底需要多少数据?到底如何定义有效数据量

机器学习中最值得问的一个问题是,到底需要多少数据才可以得到一个较好的模型?从理论角度,有Probably approximately correct (PAC) learning theory来描述在何种情况下,可以得到一个近似正...

被人工智能代替人不止是一小部分,即使AI开发者也可能要失业!

过去一年,人们越来越担心人工智能和自动化对人类就业和劳动力产生的影响。这无时不刻都在警示人们:机器人将人类推入失业并造成经济和社会混乱。

谷歌宣布开放TPU云服务:6.5 美元/小时限量发售

日前,谷歌宣布将 TPU 深度学习加速器云服务开放给第三方厂商和开发者,目前为 Beta 版。今天开始,Cloud TPU 产品就可以在 Google Cloud Platform 买到了,价格为 6.5 美元/小时,且是限量...

量子计算正接近现实 破解网络加密或建立全新的分子模型

量子计算可能是标志着科技界最大的变革之一,其利用量子力学机制来加速计算机运算速度。研究人员希望最终能利用它破解网络加密或建立全新的分子模型。

盘点50个杀手级人工智能项目

这个世界上我们所创造的所有技术其实都只为一个目的而服务——“一步一个脚印地让生存更轻松”,但现在,事情的发展似乎有些停滞不前了。

给我留言

您必须 [ 登录 ] 才能发表留言!