现在的位置: 首页资讯>正文

NEC宣布开发了更易于提高识别精度的深度学习自动优化技术

2017年12月21日 作者: 暂无评论 781+ 0

近日,NEC宣布开发了更易于提高识别精度的深度学习自动优化技术。以往进行深度学习时,很难基于神经网络构造进行调整,所以无法在整个网络进行最优化的学习, 因而无法充分发挥其识别性。此次开发的技术, 可以基于其结构自动优化神经网络学习的进度,从而轻松实现比以往更加精准的识别。

此技术的出现,使得应用了图像识别及声音识别等深度学习技术的各个领域,均有望实现识别精度的进一步提高。例如,人脸识别和行为分析等视频监控识别精度的提高、基础设施等点检工作效率的提高,实现自动检测灾害、事故和灾难等。NEC

近年来,深度学习的研究取得了飞跃性的进展。在图像识别、声音识别等广泛领域内得到了应用。深度学习使用具备深层构造的神经网络, 学习事先准备好的数据来实现高精度化。但是,如果数据被过度地学习,则会出现“过学习”的现象,即只能高精度地识别学习过的数据,而未用于学习的数据的识别精度则降低。为了避免这种情况的发生,就需要使用“正则化”技术进行调整。

由于神经网络的学习过程因其结构而复杂多变,所以过去只能对整个网络使用相同的正则化技术。结果出现了网络各层有的过度学习,有的学习停滞等问题,因而很难充分发挥原有的识别性能。另外,由于手动调整各层的学习进度极为困难,所以对于逐层自动调整学习进度的需求呼声很高。

此次开发的技术是基于神经网络的结构,逐层预测学习进度,并自动配置适合各层进展的正则化技术。通过此技术,在整个网络中学习被优化,并且可以将识别错误率降低约20%,改善识别精度。NEC

新技术的优点

1、根据神经网络结构的自动学习优化

基于神经网络的结构,我们预测每层的学习进度,并逐层自动设置适合于各层进展的正则化。据此,整个网络的学习进度就得到了优化,解决了过去各层过度学习和学习停滞的问题。在使用该技术的手写数字数据的识别实验中,识别错误率降低了约20%,识别精准度已经得到明显改善。NEC

2、与以往相同的计算量下,轻松实现高精度

该技术仅在学习神经网络前实施一次,即可在与以往同等的学习计算量下轻松地实现高精度。

NEC集团致力于在全球范围内推进社会解决方案,提供安心、安全、高效、公平的社会价值,将先进的ICT技术与知识相融合,为实现更加光明、更加丰富多彩的高效社会尽一份力量。

原文地址: https://www.eeboard.com/news/nec-2/

搜索爱板网加关注,每日最新的开发板、智能硬件、开源硬件、活动等信息可以让你一手全掌握。推荐关注!

【微信扫描下图可直接关注】 aibanwang

发表评论

相关文章

要逆天!美国科学家用AI从太空中识别肥胖社区

你今天燃烧卡路里了吗?近年来,随着我们生活水平的提高和日常习惯的改变,肥胖渐渐成为了令无数人困扰的难题。为了实现减肥的目标,人们曾使出十八般武艺,动感单车、瑜伽、针灸、减肥药、...

小型人工智能(AI)深度学习神经网络晶片面世——“AI小鼠Mipy”

16日,台湾师范大学与视芯(AVSdsp)公司合作开发的小型人工智能(AI)深度学习神经网络晶片“AI小鼠Mipy”在台师大发布,引发关注。

重磅!树莓派正式支持谷歌深度学习框架TensorFlow

树莓派的最新版本系统正式支持TensorFlow,让每个开源硬件爱好者都能享受深度学习的乐趣! 2015年,谷歌TensorFlow推出,从此,它一直致力于成为每一个人的开源深度学习工具。 长期以来,经...

NEC:一届支持面部识别的奥运会——2020东京奥运会

据外媒报道,NEC 刚刚宣布,将为 2020 年在日本东京举办的奥运会和残奥会,提供大型的面部识别系统。该系统将服务于包括运动员、志愿者、媒体、及其它工作人员在内的 30 万人

人类是否该拥抱人工智能?

从语音识别到语言翻译,从下围棋的机器人到自动驾驶汽车,各行各业都在该人工智能的驱动下出现了新的突破。虽然现代神经网络的表现令人激动,但也面临一个棘手的问题:没人理解它们的运行机...