现在的位置: 首页资讯>正文

英伟达制造:Noise2Noise,图片去噪更简单

2018年07月24日 作者: 暂无评论 760+ 0

△Noise2Noise:我有特别的降噪技巧

如今,会去噪的神经网络,早已算不上稀有物种。

不过,英伟达的Noise2Noise,和普通的降噪AI还是有些不一样。

一般训练去噪技能,就需要给神经网络,喂食成双成对的图像。

一张清晰,一张噪点满满。AI会在大量的对比中,习得去除噪音的方法。

但Noise2Noise的食谱里,没有清晰的图,只有孤单的满是噪音的图像。

即便如此,训练完成的AI依然能够了解,怎样的图像才是干净的,并以毫秒级的速度去噪。

这样的学习能力,被ICML 2018选中了。

脑补清晰的信号

Noise2Noise,是英伟达和阿尔托大学,以及麻省理工 (MIT) 共同的作品。

既然,没有清亮与浑浊相互对照,神经网络就要学习,直接把自己观察到的、充满噪点的景象,和素未谋面的、清晰的信号,建立联系 (mapping) 。

听上去可能有些匪夷所思,不过训练好的AI,只要观察图像两次,便可以轻松处理各种各样的噪音。

文章开头有高斯噪音的栗子,上图则是泊松噪音。

还有一种叫做脉冲噪音的怪兽,看上去很厉害,但瞬间就被脱了皮——

另外,清除弹幕虽然不像个有用的功能,但要还原被文字挡住的画面,也并不容易。

但Noise2Noise的疗效依然显著。

连白色建筑物的纹理,都不太看得出,修饰过的痕迹。

这些都是,用ImageNet数据集里的50,000幅图像,训练的结果。

有关键用途 · 传送门

如果,清弹幕的工作,不必劳动神经网络的大驾,那么处理医学影像,应该算得上重要的应用场景了。

头部核磁检查的去噪结果,或许可以帮助医学工作者,做出更有效的诊断。

原味地址:http://www.eeboard.com/news/nvidia-noise2noise-ai/

搜索"爱板网"加关注,每日最新的开发板、智能硬件、开源硬件、活动等信息可以让你一手全掌握。推荐关注!
【微信扫描下图可直接关注】

发表评论

相关文章

深度学习已死?完全夸大其词,深度学习是AI发展的下一个阶段

英特尔副总裁在受访时表示,“深度学习已死”这类报道完全属于夸大其词,深度学习是AI发展的下一个阶段,英特尔预计在2020年将深度学习技术应用在日用品和可穿戴设备上。

还以为人工智能打幌子忽悠人忽悠人?Mate 20其实已经用上AI

1950 年,为了分辨机器是拥有自创的思想,还是精心设计的程序,英国数学家、逻辑学家 Alan Turing 「煞费苦心」地提出了著名的「图灵测试」;而半个世纪以后的今天,生活和工作被人工智能概...

一文带你读懂人工智能结合边缘计算格局

近日,华为和比特大陆纷纷发布了针对边缘计算的新芯片产品。华为的Ascend系列采用达芬奇架构,其中Ascend 310功耗8W算力8TOPS正是针对边缘计算市场。而之后比特大陆发布的BM1682和BM1880也是...

AI将如何改变IoT架构

物联网副总裁卢托斯坦斯基(Lou Lutostanski)表示,Avnet未来主义者表示,人工智能(AI)和物联网(IoT)将比工业革命和数字革命加起来更深刻地改变商业和社会,我们现在开始看到这个世界可能如何...

还原海底“鲸之歌”——谷歌AI

有趣的是,但回顾起来并不奇怪,音频没有这样分析;相反的是,音频被转换成图像,它可以寻找模式。这些声谱图记录了声音在一定频率范围内随时间的强度,可以用于各种有趣的事情。碰巧的是,...