现在的位置: 首页资讯>正文
新的保护电池供电系统的解决方案
2017年10月09日 作者: 暂无评论 67+ 0

USB -1

电池供电的电子产品给电源系统工程师造成了多种挑战。从理论层面上看,电池相关电路 (在 DC/DC 转换之前) 可以分成 4 种功能:电源选择、充电 (就充电电池而言)、监视和保护。在电池供电的系统中一般提供多种电源,例如交流适配器、USB 端口和内部电池,电源选择功能确定这些电源的优先顺序,而充电电路需要针对特定电池化学组成进行定制。监视电路报告电池电压、电量和温度状态,监视电路与电池保护电路一起使用,还可确保更高的可靠性。在本文中,我们将探讨一种新的微功率电池保护器件的功能和优势,该器件非常适合从汽车、医疗到消费类应用的各种电池应用。

用电池电源进行设计时需要考虑的问题

不仅是着火和爆炸,即使简单的电池相关问题也能损害一款产品的声誉。因此,必须注意电池相关安全功能的设计。电池有其充电和放电电流额定值,超过这些额定值电池会发热,这不仅会缩短电池寿命,在最坏情况下还会使电池爆炸。可以用保险丝实现过流保护,但是保险丝太笨重,反应慢,其跳变门限有很大的容限 (图 1)。为了防止不可修复的损坏,充电电池进入深度放电之前需要断接。就一节 3.7V 锂离子电池而言,这个电压值约为 2.5V。需要一个欠压闭锁 (UVLO) 电路以断开电池与负载的连接。可以用一个比较器、基准电压和一个固态开关来实现这种电路。P 沟道 MOSFET 高压侧开关不需要充电泵来接通,从而减少了电池电流泄漏,但是 P 沟道 MOSFET 选择有限,在相同接通电阻情况下,价格比 N 沟道 MOSFET 高。反过来,如果接地线可被浮置,则可以采用一个更高效的 N 沟道 MOSFET 低压侧开关。欠压门限必需具有充足的迟滞;否则,由于电池电压在负载关断之后恢复,因此 UVLO 电路将发生 “断-通-断” 振荡。

USB -2

图 1:一种可能的分立式电池和负载保护电路

电池保护之后,我们需要考虑负载保护。瞬态电压抑制器在振铃、尖峰、浪涌等短暂情况下实现过压保护,但是在持续或 DC 过压 (OV) 时就会烧毁。因此,需要另一个比较器针对输入过压保护负载。如果电池错误地以相反极性插入,那么负载如果不能承受负电压,就有可能损坏。可以用一个串联二极管来隔离负电压。但是,这个二极管消耗功率,在正向运行时产生很大的压降。

正如我们看到的那样,需要大量分立式组件和电路以为电池供电的系统实现全面保护。同时,这些电路的静态电流消耗需要保持很低,以便电池的运行时间和备用时间不会缩短。例如,汽车电子模块的备用电流预算低于 100µA,以在汽车停泊几周时防止电池放电。就消耗大电流的电路而言,可以使用继电器断开电路和电池。继电器还可用来接通和断开负载,但是继电器太笨重,无法减小外形尺寸。因此,需要一种更加高效、更加简单的保护方法。

 用于电池电源控制和保护的低静态电流解决方案

LTC4231 是一款超低静态电流 (IQ) 热插拔控制器,允许在 2.7V 至 36V 系统 (图 2) 中插入和抽取电路板或电池。2.7V 至 36V 运行范围适合多种电池化学组成,包括铅酸、锂离子和叠置式镍氢金属、镍镉或碱性电池。

USB -3

图 2:LTC4231 热插拔控制器和电子电路断路器仅消耗 4µA 静态电流,非常适合电池供电的系统

LTC4231 控制外部低损耗 N 沟道 MOSFET,以缓慢地给电路板电容器加电,从而避免瞬态放电、连接器损坏和系统干扰。软启动和浪涌电流值很容易用连至 MOSFET 栅极的电阻器-电容器调节。在正常运行时 (通路 MOSFET 完全接通),通过一个定时的断路器和快速电流限制提供双重过流保护。当发生轻微过载时,一个故障定时器被激活;当该定时器期满时,MOSFET 开路以与负载断接。在重度过载或输出短路的情况下,故障定时器被激活,而且负载电流被限制在比电路断路器门限高 60% 的水平。根据选项的不同,LTC4231 在电流故障之后保持关断状态或在经历一个 500ms 冷却周期之后自动地接通。

欠压保护断开低压电池以防止深度放电,同时负载去除后,可调迟滞避免电池恢复导致的震荡。输入过压时断接负载,从而防止损坏。LTC4231 不会损坏,并通过控制背对背 N 沟道 MOSFET (图 3),针对高达 -40V 的反向电池保护下游电路。如果不需要反向输入保护,那么单个 MOSFET 就够了。

USB -4

图 3:当插入反向电池时,例如,在输入 (IN) 端接入 -24V,LTC4231 通过隔离负电压,防止传播到输出 (OUT) 来保护负载。需要背对背 MOSFET (如图 2 所示) 来实现反向输入保护。

即使提供所有这些功能,器件的静态电流在正常运行时也仅为 4µA,将 LTC4231 置于停机模式时,可将其 IQ 降至 0.3μA,并关断外部 N 沟道功率 MOSFET 以断接下游电路,从而延长电池备用时间。为了确保低电流运行,欠压和过压阻性分压器被连接至一个选通接地,从而将其平均吸收电流降低 50 倍。

降低静态电流的方法

LTC4231运用了两种创新方法以降低其在正常操作期间的电流消耗,同时提供与其他大消耗电流控制器毫无差别的保护功能。为了接通外部 N 沟道 MOSFET 和降低其导通电阻,LTC4231 采用了一个内部充电泵,以产生一个至少比输入电压高 10V 的栅极电压。在其他控制器中,充电泵即使在栅极被驱动至导通之后也是持续地工作,虽然基本上处于闲置状态,但对于静态电流消耗 “贡献” 显著。与此不同,LTC4231 则是在 MOSFET 栅极达到其峰值电压之后关断充电泵。如果栅极电压由于漏电的原因下降,则充电泵接通以提供一个电荷脉冲,从而刷新栅极电压。在图 4 中以 0.1µA 和 1µA 的栅极漏电流为例对此进行了说明。该方法把充电泵电流消耗减小了 50 至 100 倍,这是因为充电泵接通时的电流消耗为 200µA,但在睡眠模式中则降至 2µA。

USB -5

图 4a:为了降低静态电流,LTC4231 周期性地启动充电泵,以按需刷新 MOSFET 栅极电压。

图 4b:针对两个不同的栅极泄漏例子 (ΔVGATE 是栅极至源极电压,ICC 是 LTC4231 的电流消耗) 显示 MOSFET 栅极电压刷新率。

USB -6

图 5:每隔 10ms 在 200µs 窗口 (2% 占空比) 内监视输入电压,以将 UV/OV 监视电流消耗降低 50 倍。在采样窗口中,GNDSW 通过一个内部 80Ω 开关连接到 GND。

结论

出于功能性、便携性和方便性的原因,许多新兴电子应用 (如无线传感器、健身追踪器、增强现实眼镜、无人机、机器人等) 均采用电池供电。锂离子电池等高能量电池已经把电池安全性的问题带入了公众视野。LTC4231 为特别重视节能之应用中的热插拔和电池保护提供了一款简单、紧凑和坚固的微功率解决方案,从而可避免系统遭受电池深度放电、输出过载或短路、过压和电池反接的损坏。

原文链接:http://www.eeboard.com/news/source-2/ 

搜索爱板网加关注,每日最新的开发板、智能硬件、开源硬件、活动等信息可以让你一手全掌握。推荐关注!

【微信扫描下图可直接关注】

aiban

  

相关文章

Diodes车用MOSFET为汽车电子控制单元提供 电池反向保护
DI0838_DMP4015SPSQ-NPS-image

Diodes公司 (Diodes Incorporated) 推出DMP4015SPSQ 40V P通道MOSFET,旨在为车用电子控制单元提供电池反向保护。电子控制单元在愈来愈多车用控制应用内使用,有些汽车更安装了多达80个电子...

Diodes推出30V MOSFET,使大容量电容器能够在FPGA电源轨上快速及安全放电
DMN3027LFG 30V N

Diodes公司 (Diodes Incorporated) 新推出的DMN3027LFG 30V N通道MOSFET作为开关使用,确保在现场可编程门阵列 (FPGA) 电源轨上使用的大型大容量电容器能够快速及安全放电。电信设备、服务器...

Diodes全新100V MOSFET优化以太网供电应用
DI0836_DMN10H120SFG-PR-image

Diodes公司 (Diodes Incorporated) 新推出的DMN10H120SFG MOSFET作为符合IEEE 802.3标准的48V以太网供电 (PoE) 系统的开关,能够通过以太网线缆向无线接入点、VoIP网络电话、销售点终端、呼...

e络盟进一步扩充英飞凌CoolMOS™与OptiMOS™系列功率MOSFET, 支持亚太区电子产品设计

e络盟日前宣布新增来自全球半导体和系统解决方案领先提供商英飞凌的CoolMOS™与OptiMOS™系列产品,进一步扩充其功率MOSFET产品组合。该系列产品可为开关电源(SMPS)应用提供优异性能,从而实...

Vishay推出新款双片N沟道TrenchFET功率MOSFET
MOSFET

日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出采用超小尺寸的热增强PowerPAK SC-70封装的新款双片N沟道TrenchFET功率MOSFET。Vishay Siliconix SiA936EDJ可在便携式...

给我留言

您必须 [ 登录 ] 才能发表留言!